

Reg.	No:													
	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR													
	(AUTONOMOUS)													
		M.Te	ech I `	Year	II Sen	neste	r Rec	ular	Exam	inati	ons C	Oct-2020		
					STR	UCT	URAL	DYN	AMI	CS				
					(Struct	ural E	nginee	ring)					
Time:	Time: 3 hours Max. Marks: 60													
	(Answer all Five Units 5 x 12 = 60 Marks) UNIT-I													
1	Explain different types of vibration problems and derive their equations of motion.												12M	
2	Write short notes on												12M	
	(i) Degrees of freedom system,													
	(ii) Simple harmonic motion, and													
	(iii) D'Alemberts principle.													
	UNIT-II													
3	a Derive an expression for un-damped forced vibration of SDOF subjected to 8M													
	harmonic excitation.												4 M	
4	a Deri	ve an e	express	sion fo	or equ	ation o	of mot	ion for	r free	un-dai	mped	SDOF system.	8 M	
	b Writ	te short	t notes	on th	e band	l widtl	n meth	od.			1	J	4M	
	UNIT-III													
5	a Formulate the equation of motion for un-damped free vibrations of MDOF system.													
	b Write short notes on dynamic equilibrium.												4M	
	OR													
6	Determine the natural frequencies and mode shapes of the given MDOF system? Take $12M$ EI=5x10 ⁶ N-m ² for all the columns.													
				3	000 kg	ſ				1 -	2m			
				4	000 kg					1 3	ßm			

7 Derive the natural frequency and mode shapes for an uniform beam having one end **12M** fixed and the other end simply supported.

OR

8 a Derive the equation of motion for the beam subjected to uniformly distributed load.
b Write short notes on flexural vibrations of beams.
5M

UNIT-V

9 Calculate the approximate natural frequency of a system shown below by using **12M** Transfer matrix method?

10 Explain step by step procedure of Stodola's method. Derive the fundamental natural 12M frequencies and mode shapes.

*** END ***